

January 7, 2025 File: TF24239E

Mr. Michael Vegas
Engineering Manager
Amalgamated Sugar Company
2320 Orchard East
Twin Falls, Idaho
Email: mvegas@amalsugar.com

RE: Geotechnical Engineering Evaluation

Evaporator Building Amalgamated Sugar Plant Twin Falls, Idaho

Dear Mr. Vegas,

STRATA is pleased to present our authorized Geotechnical Engineering Evaluation (GEE) Report for the planned evaporator building at the Amalgamated Sugar Plant in Twin Falls, Idaho. The purpose of our GEE was to assess the subsurface conditions at the project site and provide geotechnical engineering recommendations for planning, design, and construction of the proposed facility. The attached report summarizes our field exploration and laboratory testing and presents our geotechnical engineering opinions and recommendations.

Our services were accomplished referencing conversations with you and our proposal dated December 4, 2024, and authorized with Purchase Order #335781. Portions of this report cannot be relied upon individually without the supporting text of remaining sections, appendices, and/or plates. When providing this report to designers, estimators, contractors, etc., the report including all appendices, plates and attachments must be provided in its entirety.

We appreciate the opportunity to work with Amalgamated Sugar Company and your design team and look forward to our continued involvement with this project throughout design and construction. Please contact us if you have any questions or comments.

Sincerely, STRATA

Carbella Medina Staff Engineer

CM/ZL/DG/kb

Zach Lootens, P.E. Project Engineer

18689 1/7/2025

> Dan P. Gado, P.E. Senior Engineer

Daniel P. Hado

Geotechnical Engineering Evaluation

Evaporator Building – Amalgamated Sugar Plant Twin Falls, Idaho

January 7, 2025

Prepared for:

Michael Vegas Engineering Manager Amalgamated Sugar Company 2320 Orchard East Twin Falls, ID

TABLE OF CONTENTS

INTRODUCTION	1
PROJECT UNDERSTANDING	1
Existing Site Conditions	
Proposed Development	1
FIELD EXPLORATION	1
Subsurface Exploration	1
SUBSURFACE CONDITIONS	2
Groundwater	3
LABORATORY TESTING	
GEOTECHNICAL OPINIONS AND RECOMMENDATIONS	3
Geotechnical Constraints	
Undocumented Fill	4
Close Proximity to Existing Structure	
Earthwork	
Excavation Characteristics	
Site Stripping	5
Proof Compaction	
Subgrade Preparation	
Structural Fill	
Compaction	
Wet Weather/Wet Soil Construction	
Seismic Design Criteria	
Foundation Design Recommendations	
Shallow Foundations	
Concrete Slab-on-Grade Floors	
Utility Trench Backfill	9
GEOTECHNICAL DESIGN CONTINUITY	
Plan and Specification Review	
Geotechnical Design Confirmation	
Construction Observation and Testing	
EVALUATION LIMITATIONS	
REFERENCES	11
REPORT TABLES	
TABLE 1: BORING LOCATION & DEPTH	2
TABLE 2. STRUCTURAL FILL SPECIFICATIONS AND ALLOWABLE USE	
TABLE 3. SEISMIC RESPONSE CRITERIA	

REPORT PLATES & APPENDICES

PLATE 1: EXPLORATION LOCATION PLAN
APPENDIX A: EXPLORATORY BORING LOGS
APPENDIX B: LABORATORY RESULTS

Geotechnical Engineering Evaluation Report

Evaporator Building – Amalgamated Sugar Plant Twin Falls, Idaho

INTRODUCTION

STRATA is pleased to present our Geotechnical Engineering Evaluation Report for the proposed evaporator building at the Amalgamated Sugar Plant in Twin Falls, Idaho. The purpose of our evaluation was to evaluate the subsurface soil and groundwater conditions and to provide geotechnical engineering opinions and recommendations to assist project planning, design, and construction. We accomplished our geotechnical services referencing our proposal dated December 4, 2024, and PO #335781.

PROJECT UNDERSTANDING

Existing Site Conditions

The Evaporator Building will be located on the east side of the factory directly east of the B&W Boiler House and in close proximity to the Transformer Building to the north. The recently demolished Bag House previously occupied the proposed site location; however, the existing foundation consisting of individual spread footings overlain with a 5-inch-thick slab is still in place.

Proposed Development

We understand the proposed evaporator building will be approximately 140 feet tall with a 40 foot by 60-foot footprint. Individual column loading is variable, ranging from 20kips to 330 kips for unfactored combined dead and live loading. Based on our recent discussion with the design team, we understand the columns are planned to be supported on spread or strip footings. We also understand that the floor slab/mat will be designed for 1,500 psf loading to accommodate potential future equipment. The planned building footprint may be expanded to the east in the future. Earthwork grading of up to 1 foot is anticipated. Stormwater will be directed to the existing collection system.

FIELD EXPLORATION

Subsurface Exploration

STRATA observed two exploratory borings across the project site on December 13, 2024. Table 1 below summarizes the approximate location and depth of each boring. All depths are in reference to the existing ground surface elevation at the boring location. Latitude and longitude were established using a handheld Global Positioning System (GPS) device accurate to within 10 feet, using the WGS 84 datum. The boring locations are illustrated on Plate 1, *Exploration Location Plan*.

File: TF24239E Page 2

Table 1: Boring Location & Depth

Boring Designation	Latitude	Longitude	Depth to Basalt (ft)	Termination Depth (ft)
B1	42.43178	-114.43178	12.0	20.0
B2	42.53238	-114.43169	11.3	11.3

Borings were advanced using a Diedrich D120 drill rig equipped with an 8.25-inch-wide hollow stem auger. Soil samples were obtained via 2.0-inch standard split-spoon samplers and modified 3-inch OD split barrel samplers, driven with a 140-pound automatic hammer falling 30.0 inches. The Standard Penetration Test (SPT) N-values (in blows-per-foot) were recorded for each soil sample. N-values obtained while using the modified 3-inch OD split barrel sampler were normalized using a modification factor of 0.65 (Burmister, 1948) to obtain the equivalent 2-inch OD SPT N-values. Sampling was performed in general accordance with ASTM D1586, and soil samples were collected at 2.5 to 5-foot intervals. Rock was continuously cored in B1 using a triple tube HQ core barrel. Percent recovery and Rock Quality Designation (RQD) were measured in the field. A field engineer logged and visually classified the soil encountered in each boring in accordance with the Unified Soil Classification System (USCS) Visual-Manual Procedure (ASTM D2488) and rock core samples were classified in accordance with the Unified Rock Classification System. A key to terms presented on the boring logs is included in Appendix A. We advanced the borings to evaluate the subsurface material and to obtain samples for further evaluation and laboratory testing. The samples were packaged and labeled onsite and then transported to our laboratory.

SUBSURFACE CONDITIONS

The subsurface conditions across the site can generally be described as undocumented fill overlying native loess, underlain by basalt. A general description of each unit's stratigraphic location and properties is provided below:

Portland Cement Concrete – We observed a 5-inch-thick existing concrete slab remaining from the Bag House.

<u>Granular Base</u> – An 8-inch gravel section was observed below the slab. We classified the base as medium dense Poorly Graded Gravel with Silt and Sand (GP-GM).

<u>Undocumented Fill</u> – We estimate the undocumented fill extends from below the base layer to approximately 7 feet below ground surface (BGS). The fill composition was variable and classified as very stiff Sandy Silt (ML) and loose to dense Silty Sand (SM) with various amounts of Gravel and Silty Gravel with Sand (GM). We observed what we assume to be precipitated calcium carbonate (PCC) material in the Sandy Silt (ML) layer in B1. The fill also contained rubble (e.g., rusty nails) and basalt and caliche cobbles.

<u>Native Loess</u> – The native loess was classified as hard Sandy Silt (ML) and dense to very dense Silty Sand (SM) The SPT N values in this layer indicate moderate to strong cementation.

> Twin Falls, Idaho File: TF24239E

> > Page 3

<u>Basalt Bedrock</u> – Basalt bedrock was encountered at approximately 12 feet in B1 and 10 feet in B2. The upper

basalt was completely weathered from 10 feet to 11.5 feet in B2. The cored basalt in B1 was medium strong with

high vesicularity and close fracture spacing. A strongly cemented soil interbed approximately two to three feet

thick was encountered between 16 and 20 feet.

Groundwater

Groundwater was not encountered at the time of exploration. Nearby well data indicates that groundwater levels

are between 15 to 30 feet deep. It should be noted that groundwater levels can fluctuate seasonally and in response

to precipitation events and irrigation and with proximity to Rock Creek.

LABORATORY TESTING

Soil samples collected from the explorations were returned to our laboratory for further classification and testing.

Laboratory testing was accomplished in general accordance with ASTM International (ASTM) and other

procedures. ("General accordance" means that certain local and common descriptive practices and methodologies

have been followed.) Our laboratory testing program included:

Determination of Water (Moisture) Content of Soil and Rock by Mass (ASTM D2216)

Determining the Amount of Material Finer than 75-µm (No.200) Sieve in Soils by Washing (ASTM)

D1140)

• Standard Test Method for One-Dimensional Swell or Collapse of Soils (ASTM D4546)

Chemistry Suite: pH, Resistivity, and Sulfates (ASTM D4972, ASTM G187, and ASTM C1580)

Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core

Specimens under Varying States of Stress and Temperatures (ASTM D7012)

Laboratory test results are included on the exploration logs in Appendix A and summarized in Appendix B.

GEOTECHNICAL OPINIONS AND RECOMMENDATIONS

The following geotechnical engineering recommendations were developed to support design and construction of

the proposed structure. Our recommendations and opinions are based on the results of our field evaluation,

laboratory testing, our experience with similar soil/rock conditions, and our understanding of the proposed

construction.

STRATA

> Twin Falls, Idaho File: TF24239E

Page 4

Geotechnical Constraints

Undocumented Fill

The proposed construction area is underlain by undocumented fill with variable consistency to approximately 7

feet BGS. Undocumented fill poses a settlement and bearing capacity risk due to the variation in composition and

compaction/strength, and the potential of deleterious materials, such as organics or other degradable substances.

Due to these risks, the standard practice is to remove undocumented fill by over-excavation and replace it with

structural fill to mitigate differential settlement or low bearing capacity. Due to the non-uniform composition and

unknown compaction of this soil layer, it is difficult to model settlement accurately. Recommendations regarding

removal and replacement of undocumented fill are provided in the Subgrade Preparation section.

Close Proximity to Existing Structure

As discussed above, soil improvement via over excavation of undocumented fill and replacement with Granular

Structural Fill will be required beneath the proposed evaporator building footings. We understand that the

separation distance between the existing strip foundation for the existing transformer building to the north and the

centerline of the northmost evaporator building column line is approximately 5.5 feet. Foundation drawings

provided by Amalgamated Sugar show the existing transformer building strip footing is embedded four feet below

grade. The two primary risks for constructing new footings next to existing footings are 1.) undermining existing

foundations during over excavation for soil improvements and 2.) increasing stresses below the existing

foundation to levels that results in settlement of the existing building. Recommendations for over excavation

methods to mitigate undermining and settlement are provided in the Subgrade Preparation section.

Earthwork

Excavation Characteristics

Based on our exploration, the soil at the project site may be excavated with conventional earthwork equipment.

Excavations may cave and slough and are to be sloped in accordance with Occupational Health and Safety Act

(OSHA) guidelines. The on-site soils correspond to Class C since they are identified as undocumented fill

consisting of silty sand. Excavations in Class C soils should be temporarily sloped no steeper than 1.5H:1Vfor

excavations deeper than 4 feet. However, excavations near existing structures will require steeper temporary

slopes. Steeper temporary slopes can be accomplished; however, it will be necessary to keep personnel out of the

temporary excavations, as described further in the *Subgrade Preparation* section.

Surcharges must not be allowed within a horizontal distance equal to one-half the excavation depth. Construction

vibrations can cause excavations to slough or cave. Ultimately, the contractor is solely responsible for site safety

and excavation configurations. We recommend earthwork contractors evaluate each excavation configuration

STRATA

> Twin Falls, Idaho File: TF24239E

Page 5

specific to OSHA guidelines and that they seek appropriate professional guidance to ensure excavation safety and

stability.

Site Stripping

Site stripping is not required for this project; however, removal of the existing slab and foundations for the bag

house will be required during soil improvement operations.

Proof Compaction

Proof compaction can be used on subgrade in lieu of density testing to create a stable platform to place structural

fill. Where specified in this report, proof compaction shall consist of compacting with a minimum of five passes

of a 5-ton drum weight vibratory roller. STRATA should observe the proof compaction to see if any pumping or

weaving of the subgrade is observed. If pumping or weaving occurs, the subgrade in question should be undercut

in accordance with Section 202, Part 3.7 Excavation of Unsuitable Material of the Idaho Standards for Public Works

Construction (ISPWC) and replaced with Granular Structural Fill as defined in the Structural Fill section. Where

proof compaction with large compaction equipment is not possible (footing trench excavations, the exposed

subgrade should be moisture conditioned as directed by STRATA and proof compacted with a hydraulic plate

compactor (vibratory hoe pack). A steel probe can be used to identify potential areas with unsuitable subgrade

where removal and replacement is required. Proof compaction as described in this section shall not be done within

2 feet of the existing footings. It is important that construction vibrations and movements be limited directly

adjacent to exposed existing footings to help reduce potential settlement.

Subgrade Preparation

We recommend soil improvements below the proposed spread footings consisting of over-excavating

undocumented fill to 6 feet BGS and replacing with Granular Structural Fill to the bottom of footing elevation. The

slab/mat will require soil improvement over excavation and backfill to a depth of 4 feet BGS. The limits of over

excavation should extend a minimum of 0.5-feet laterally for every 1-ft of removal depth below the proposed footing

and slab elevations, beyond the edge of the foundation and slab in all directions. Following over excavation for soil

improvements, and prior to placement of structural fill, the subgrade should be proof compacted.

Over-excavations for footings on the north column line of the evaporator building will require near-vertical

temporary excavations to avoid undermining the existing footing for the Transformer Building, which is understood

to be 4 feet BGS. In our experience, near vertical temporary excavations will be possible in the on-site Silty Sand

(SM) and Sandy Silt (ML) undocumented fill provided the proposed footing excavation is oriented perpendicular to

the existing building and the width of the excavation is limited to approximately 10 feet. In no case should the

bottom of existing footings be exposed during construction. We recommend that excavations from 4 feet to 6 feet

STRATA

BGS be backfilled with Granular Structural fill within the same working day as the excavation. Compaction of backfill shall be accomplished with a vibratory hoe pack or a remote operated vibratory roller, no workers shall enter the excavations deeper than 4 feet BGS. Placement of Granular Structural Fill will need to be accomplished via a method specification (in lieu of density testing) for fill placed greater than 4 feet BGS under the direction of STRATA. The method specification will consist of determining the required amount of time and passes with a hoe pack to achieve the required density. Compaction testing should be accomplished for fill placed within 4 feet BGS.

Structural Fill

The on-site fine-grained silty soil is moisture susceptible and can be difficult to use during inclement weather, but may be used as General Structural Fill, provided it is moisture conditioned and compacted in accordance with the *Compaction* section of this report. In general, the structural fill requirements described in Table 2 correlate to material specifications in the *Idaho Standards for Public Works Construction* (ISPWC).

The following soils are considered unsatisfactory for use in structural applications:

- Soil classified as CH, MH, OH, OL or PT.
- Soil with a moisture content greater than 3% of optimum moisture.
- Any soil containing more than 3% organics by weight or other deleterious substances (wood, metal, plastic, waste, etc.).

Table 2. Structural Fill Specifications and Allowable Use

Structural Fill Material • Allowable Use	Material Specifications
General Structural Fill General site grading	 Soil classified as GW, GP, GP-GM, GM, SW, SP, SP-SM, SM, SP-SC, SC, ML or CL according to the USCS. Maximum particle size must be less than 6 inches. Soil consisting of inert earth materials with less than 3% organics or other deleterious substances (wood, metal, plastic, waste, etc.).
Granular Structural Fill General structural fill Over-excavations	 Soil classified as GW, GP, GP-GM, SP and SP-SM according to the USCS, and meeting the gradation of 6- inch minus and less than 10% passing #200 sieve. Soil meeting requirements stated in the latest edition of the <i>Idaho Standard for Public Works Construction (ISPWC), Section 801 – Aggregate Subbase, with a maximum particle size of 6 inches.</i>
Utility Trench Bedding Utility trench construction	 Soil may not contain particles larger than 1 inch in median diameter and must meet the required gradation. Soil meeting requirements stated in the latest edition of the <i>Idaho Standard for Public Works Construction (ISPWC), Section 305 – Pipe Bedding.</i>

File: TF24239E Page 7

Structural Fill Material • Allowable Use	Material Specifications
Aggregate Base Course Granular structural fill Slabs-on-grade	 Soil may not contain particles larger than 1 inch in median diameter and must meet the required gradation. Soil meeting requirements stated in the latest edition of the <i>Idaho Standard for Public Works Construction (ISPWC), Section 802 – Aggregate Base.</i>

Compaction

All structural fill should be compacted to a minimum of 95 percent of the maximum dry density of the soil as determined by ASTM D1557 (Modified Proctor). Structural fill must be moisture-conditioned to near optimum moisture content, placed in maximum 8-inch-thick loose lifts for fine grain cohesive soils, and 12 inches thick loose lifts for granular soils, then compacted using appropriate compaction equipment. If smaller or lighter compaction equipment is used, the lift thickness should be reduced to meet the compaction requirements.

Testing of structural fill shall consist of a minimum of one modified proctor, particle size distribution, and Atterberg limit (as needed) per imported material type. Density testing shall be accomplished with a nuclear density meter at a minimum frequency of two tests per lift below the slab in the building area and one test per lift for spread footings.

Wet Weather/Wet Soil Construction

We recommend earthwork be performed during dry weather conditions. Fine-grained, silty, and clayey soils are susceptible to pumping and/or rutting when the soil is above optimum moisture content and is subjected to heavy loads, such as rubber-tired equipment or vehicles. Earthwork should not be performed immediately after precipitation events until the soil has dried sufficiently to support construction traffic without disturbing the subgrade. The contractor shall take precautions to protect the subgrade from becoming saturated and/or disturbed. Use of tracked mount equipment can limit the disturbance of moisture sensitive soil. We recommend the contractor limit construction traffic on the prepared subgrade and reduce exposure of the subgrade to precipitation and water. Specifically, the contractor should:

- Slope subgrades to direct surface water away from construction areas.
- Remove subgrade soil that has become soft and/or pumping and replace it with properly compacted structural fill, as described in the Structural Fill subsection above.
- Not place structural fill during or immediately following a significant precipitation event.
- Not place structural fill on frozen or saturated subgrades.

File: TF24239E

Page 8

Seismic Design Criteria

Based on our subsurface test pit, geologic data, the project location, and ASCE 7 (ASCE, 2016), we recommend Seismic Site Class C be utilized for the seismic design of the project, provided the soil improvements outlined in the Subgrade Preparation Section are accomplished beneath the shallow foundations. Seismic response criteria are presented in Table 3.

Table 3. Seismic Response Criteria

Period (seconds)	Mapped Acceleration Coefficients (g)	Site Factor for Site Class C	Modified Acceleration Coefficient for Site Class C (g)
Peak	PGA = 0.087	F _{PGA} = 1.3	PGA _M = 0.113
0.2 (Short)	S _S = 0.197	F _a = 1.3	S _{DS} = 0.170
1.0	S ₁ = 0.083	F _v = 1.5	S _{D1} = 0.083

^{1.} Values for location Latitude 42.5330°N and Longitude 114.4316 °W

Conditions required for liquefaction to occur include relatively loose, fine granular soil, shallow groundwater, and strong earthquake ground motions. Due to the absence of these conditions and the low seismic hazard at this site, it is our opinion that liquefaction is unlikely to occur.

Foundation Design Recommendations

Shallow foundations may be utilized for this project provided the soil improvement procedures outlined in the *Subgrade Preparation Section* are performed. We recommend the bottom of exterior footings be located a minimum of 24 inches below finished grade to provide frost protection.

Shallow Foundations

Shallow foundations must be structurally designed to conform to the latest edition of the International Building Code (IBC). Provided the soil improvements outlined in the *Subgrade Preparation Section* are accomplished, an allowable bearing capacity of 5,000 psf may be used for footings.

We recommend designing footings on the northmost column line to allow for a minimum separation (edge to edge) distance of 3.5 feet. With this separation distance, we estimate that induced loading below the existing foundations will be up to 500 psf.

A friction coefficient of 0.55 can be used for concrete placed on Granular Structural Fill or Aggregate Base Course. The bearing capacity may be increased 33 percent to account for transitory live loads such as seismic and wind and strength limit states.

> Twin Falls, Idaho File: TF24239E

Page 9

The allowable bearing capacity provided assumes that structures can tolerate up to 1-inch of total settlement and

differential settlement less than 0.002L where L is the span distance. We recommend STRATA be retained to

observe the foundation installation; including subgrade preparation and structural fill placement and compaction,

prior to placing concrete forms or concrete. Observing the subgrade preparation and foundation bearing surfaces

allows us to confirm our allowable bearing pressure recommendations and settlement estimates and is an

important part of the geotechnical engineering design process.

Concrete Slab-on-Grade Floors

The proposed concrete mat slab is planned to support equipment loading up to 1500 psf and will require soil

improvement as discussed in the Subgrade Preparation section above. The thickness of the Aggregate Base shall

be at least 4 inches below slabs. Floor slabs may be designed for the anticipated use and equipment or storage

loading conditions considering a preliminary unit modulus of subgrade reaction "k" value of 300 psi/in (12-inch

plate equivalent) based on the required soil improvements.

Utility Trench Backfill

Trenches for utilities should conform to the specifications of the Idaho Standards for Public Works Construction

(ISPWC) Section 305 and 306 (ISPWC 2017). Trench backfills below the building foundation should be imported

trench backfill, per Section 306.2.3, and compacted to Type A-1 compaction. Loose soil must be removed from the

base of trenches prior to placing utility trench bedding. In addition, if water is encountered, it must be removed

from the base of the trench before placing bedding.

Soil Corrosivity

The upper undocumented fill at this site has a moderately to extremely aggressive corrosivity based on the soil

resistivity test result of 970 ohm-cm and a pH of 8.02 for the sandy silt fill. Based on our experience local imported

granular structural fill will likely have low to moderate corrosivity. Code minimums should be maintained for steel

reinforcement and underground piping should be selected to resist corrosive soils.

Site Drainage

We understand that grading for the project will involve the cut and fill of less than approximately 2 feet to achieve

finished grades. We recommend that finish grades be sloped at a minimum of 2 percent away from the proposed

structure for a minimum of 10 feet and be directed to an acceptable collection area/facility located 30 feet or more

away from any structure. Recommendations for stormwater facilities and design infiltration rates were outside of

our scope of work for this project.

STRATA

> Twin Falls, Idaho File: TF24239E

Page 10

GEOTECHNICAL DESIGN CONTINUITY

Geotechnical design continuity will be an important aspect of this project's successful completion. In our opinion,

geotechnical continuity can occur in the planning, design, and construction project aspects. Specifically, we

recommend STRATA maintain the geotechnical design continuity in the following aspects:

Plan and Specification Review

Once project drawings have been produced, STRATA should be notified in order to review the site plan layout and

grading plans. We recommend STRATA be retained to review final design, construction plans, and specifications

to verify our geotechnical recommendations are incorporated into project bidding and construction documents, as

well as to provide additional recommendations based on the final design concepts. These efforts can help provide

document continuity across the engineering disciplines and reduce the potential for errors as the project concepts

evolve.

Geotechnical Design Confirmation

We recommend STRATA be retained to provide geotechnical engineering oversight during site grading, foundation

installation, soil improvements and excavation to observe the potential variability in the soil conditions and provide

consultation regarding potential impacts on foundation construction.

Construction Observation and Testing

We recommend STRATA be retained to observe foundation soil improvement, excavation, grading, and concrete

placement operations for floor slab preparation and shallow foundations. Having STRATA provide inspection and

oversight during this process will reduce the potential for any unforeseen construction errors, which may ultimately

impact the project. STRATA can also provide construction material testing and special inspections for concrete,

masonry, reinforcement, steel/welding, and asphalt. If we are not retained to perform the recommended services,

we cannot be responsible for related construction errors or omissions.

STRATA

> Twin Falls, Idaho File: TF24239E

Page 11

EVALUATION LIMITATIONS

This geotechnical engineering evaluation report was prepared to assist in the design, planning, and construction

of the proposed Evaporator Building at the Amalgamated Sugar Plant in Twin Falls, Idaho. Our services and this

report are not applicable to other sites. Our services consist of professional opinions and recommendations made

in accordance with generally accepted geotechnical engineering principles and practices as they exist in southern

Idaho at the time of this report. This report has been prepared under the premise that STRATA will review the

geotechnical aspects of the plans and specifications and will provide geotechnical observation and design

verification during construction.

Soil and geologic materials, including groundwater, are variable in nature and conditions can change between

exploration locations. These changes can impact construction timing and costs. STRATA's exploration identified

the conditions at the time of our site reconnaissance and subsurface evaluation and in the discrete locations

explored. This acknowledgment is in lieu of all warranties either express or implied.

This report has been prepared specifically for Amalgamated Sugar Company and their design team. STRATA

cannot be held responsible for unauthorized duplication or reliance upon this report or its contents without written

authorization.

REFERENCES

ASCE. (2016). Minimum Design Loads for Buildings and Other Structures. ASCE/SEI Standard 7-16.

ISPWC. (2020). "IDAHO STANDARDS for PUBLIC WORKS CONSTRUCTION, 2020 Edition". Local Highway Technical

Assistance Council (LHTAC), Boise, Idaho

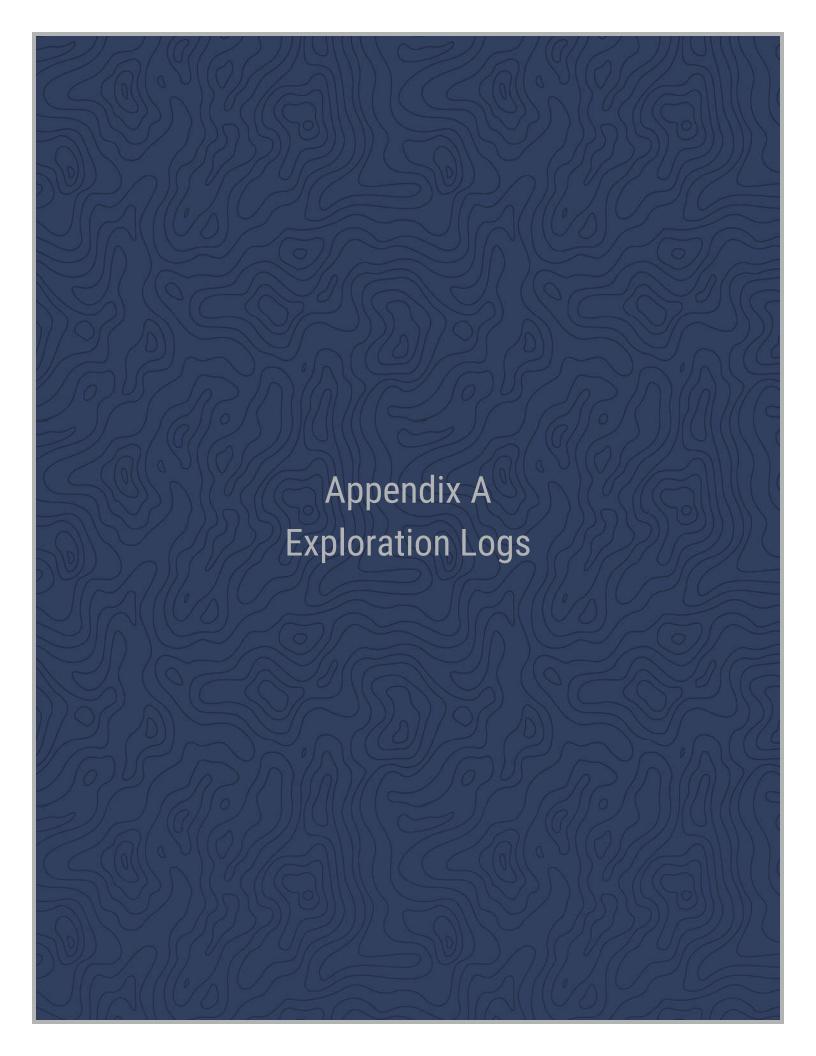
Legend

B1 **●**

Approximate location of boring observed by STRATA on December 13, 2024

Depth to Rock (Feet)

0 40 80 160 Feet Scale: 1" = 80'


STRATA

EXPLORATION LOCATION PLAN

Evaporator Building 2320 Orchard Dr E Twin Falls, Idaho

	Client: Amalgamated Sugar Company					
	Client File No.: N/A	File No.: TF24239E				
8	Drawn By: B. Pogson	Checked By: C. Medina				
	Date: 12/27/2024	Plate: 1				

Maxar, Microsoft, Bureau of Land Management, Esri, HERE, Garmin, NGA, USGS, NPS

EXPLORATION LOG KEY - SOIL

UNIFIED SOIL CLASSIFICATION SYSTEM PER ASTM D2487									GRAII	N SIZE			
DI	PRIMARY DIVISIONS SECONDARY DIVISIONS				DESCR	IPTION	SIEVE SIZE	GRAIN SIZE	APPROXIMATE				
TRIMARI DIVIDIONO		S	YMBOL		GROUP NAME	DESCR	IF HON	SIEVE SIZE	GRAIN SIZE	SIZE			
		GRAVELS WITH	00000	GW		WELL-GRADED GRAVEL	BOIII	DERS	>12"	>12"	LARGER THAN		
		<5% FINES		GP		POORLY GRADED GRAVEL	5001	DENO		712	BASKETBALL-SIZED		
				GW-GM		WELL-GRADED GRAVEL WITH SILT	COB	BLES	3 - 12"	3 - 12"	FIST TO		
	GRAVELS >50% COARSE	GRAVELS WITH	\mathfrak{S}	GP-GM		POORLY GRADED GRAVEL WITH SILT	002				BASKETBALL-SIZE		
	FRACTION RETAINED ON #4	5 TO 12% FINES		GW-GC		WELL-GRADED GRAVEL WITH CLAY		COARSE	3/4 - 3"	3/4 - 3"	THUMB TO FIST-		
	SIEVE			GP-GC		POORLY GRADED GRAVEL WITH CLAY	GRAVEL	00			SIZED		
		ODAVELO WITH	(i)	GM		SILTY GRAVEL	GR.	FINE	#4 - 3/4"	0.19-0.75"	PEA TO THUMB-		
COARSE GRAINED SOIL		GRAVELS WITH >12% FINES		GC		CLAYEY GRAVEL		ш			SIZED		
				GC-GM		SILTY, CLAYEY GRAVEL		COARSE	#10 - #4	0.079-0.19"	ROCK-SALT TO PEA		
MORE THAN 50% RETAINED ON		SANDS WITH		SW		WELL-GRADED SAND		00			SIZED		
THE #200 SIEVE		<5% FINES	*******	SP		POORLY GRADED SAND	SAND	MEDIUM	#40 - #10	0.017-0.079"	SUGAR TO ROCK-		
				SW-SM		WELL-GRADED SAND WITH SILT	/S	ME	<u> </u>		SALT-SIZED		
	SANDS >50% COARSE	SANDS WITH		SP-SM		POORLY GRADED SAND WITH SILT		FINE	#200 - #40	0.0029-0.017"	FLOUR TO SUGAR-		
	FRACTION PASSES THE #4	5 TO 12% FINES		SW-SC		WELL-GRADED SAND WITH CLAY		ш			SIZED		
	SIEVE		1	SP-SC		POORLY GRADED SAND WITH CLAY	 -	FINES <#200		<0.0029"	FLOUR-SIZED AND		
		CANDO WITH		CANDO WITH		SM		SILTY SAND					SMALLER
		>12% FINES	SANDS WITH >12% FINES	SC		CLAYEY SAND			PLASTICI	TY CHART			
				SC-SM		SILTY, CLAYEY SAND	60	1		U-Lin	A-Line		
		INORGANIC			CL		LEAN CLAY	50 %			СН/ОН		
FINE ORANIES	SILT AND CLAY		444444	ML		SILT	<u>a</u> 40			CL/OL			
FINE GRAINED SOIL	LL<50%			CL-ML		SILTY CLAY	NDEX 30						
		ORGANIC		0L		ORGANIC CLAY OR SILT			CL/OL				
50%, OR MORE, PASSING THE	SILT AND CLAY	INORGANIC		СН		FAT CLAY	AST						
#200 SIEVE	LL>50%		716161	МН		ELASTIC SILT]]	CLIML MI					
		ORGANIC		OH		ORGANIC CLAY OR SILT	0			20 30 40 50 60 70 80 90 100			
	HIGHLY OF	GANIC SOILS		PT		PEAT	<u></u>	LIQUID LIMIT (LL), %					
;	SAMPLE SYM	BOLS		OTH	HER	MATERIAL SYMBOLS			GRAIN SIZ	E MODIFIER	RS		
SPT	STANDARD PE	ANDARD PENETRATION TEST		FL		UNDOCUMENTED FILL	_ _	<5%		TRACE			
MC	MODIFIED	DIFIED CALIFORNIA		AC		ASPHALT CONCRETE PAVEMENT	- [5%-10%	,	FEW			
SH	RING (SHELBY	RING (SHELBY TUBE OR SIMILAR)		CC		PORTLAND CEMENT CONCRETE	1	5%-25%	6	LITTLE			
BK	BULK OF	_K OR GRAB BAG		GRAB BAG		CRAB	S	CRABS	3	0%-45%	6	SOME	
RC	ROC	K CORE	7	CTB CEMENT TREATED BASE			50)%-100°	%	MOSTLY			
SHC	RTHAND NO	TATIONS			(GROUNDWATER		F	DDITIONAL	DESCRIPTI	ONS		
UC UNCONFINED	COMPRESSION MC	MOISTURE CONTENT	· .	<u></u> G	ROUN	DWATER LEVEL AT TIME OF DRILLING (ATD)			– D	ISTINCT LAYER TRAN	ISITION		
BGS BELOW GRO	UND SURFACE DD	DRY DENSITY		<u> </u>	GRO	UNDWATER LEVEL AFTER DRILLING (AD)	_		– APP	ROXIMATE LAYER TR	ANSITION		
N.E. NOT ENC	DUNTERED WD	WET DENSITY		<u>v</u>		PERCHED GROUNDWATER LEVEL							

HOMOGENEOUS

SAME COLOR AND THICKNESS THROUGHOUT

EXPLORATION LOG KEY - SOIL

	APPARENT RELATIVE DENSITY OF COARSE-GRAINED SOIL						
APPARENT DENSITY	SPT (blows/ft)		FIELD TEST				
VERY LOOSE	<4	0-15	EASILY PENETRATED WITH 1/2" REINFORCING ROD PUSHED BY HAND				
LOOSE	5-10	15-35	DIFFICULT TO PENETRATE WITH 1/2" REINFORCING ROD PUSHED BY HAND				
MEDIUM DENSE	11-30	35-65	EASILY PENETRATED A FOOT WITH 1/2" REINFORCING ROD DRIVEN WITH 5-LB HAMMER				
DENSE	31-50	65-85	DIFFICULT TO PENETRATE A FOOT WITH 1/2" REINFORCING ROD DRIVEN WITH 5-LB HAMMER				
VERY DENSE	>50	85-100	PENETRATED ONLY A FEW INCHES WITH 1/2" REINFORCING ROD DRIVEN WITH 5-LB HAMMER				
	CONSISTENCY OF FINE-GRAINED SOIL						

	CONSISTENCY OF FINE-GRAINED SOIL							
CONSISTENCY	SPT (blows/ft)	UC STRENGTH (tsf)	FIELD TEST					
VERY SOFT	<2	<0.25	EASILY PENETRATED SEVERAL INCHES BY THUMB. EXTRUDES BETWEEN THUMB AND FINGER WHEN SQUEEZED BY HAND					
SOFT	2-4	0.25-0.50	PENETRATED ABOUT 1/2" BY THUMB WITH MODERATE EFFORT. MOLDED BY STRONG FINGER PRESSURE					
FIRM	5-8	0.50-1.0	PENETRATED ABOUT 1/4" BY THUMB WITH MODERATE EFFORT. MOLDED BY STRONG FINGER PRESSURE					
STIFF	9-15	1.0-2.0	INDENTED ABOUT 1/4" BY THUMB ONLY WITH GREAT EFFORT					
VERY STIFF	16-30	2.0-4.0	READILY INDENTED WITH DIFFICULTY BY THUMBNAIL					
HARD	>30	>4.0	INDENTED WITH DIFFICULTY BY THUMBNAIL					

<u></u>					
	MOISTURE CONTENT		ANGUI	LARITY	
DRY	ABSENCE OF MOISTURE, DUSTY, DRY TO THE TOUCH	ROUNDED		SUBANGULAR	
MOIST	DAMP BUT NO VISIBLE WATER				
WET	VISABLE FREE WATER, USUALLY SOIL IS BELOW WATER TABLE	SUBROUNDED		ANGULAR	
	REACTION WITH HCI		CEMEN	TATION	
NONE	NO VISIBLE REACTION	WEAK	CRUMBLES OR BREAKS WITH	HANDLING OR LITTLE FIR	IGER PRESSURE
WEAK	SOME REACTION, WITH BUBBLES FORMING SLOWLY	MODERATE	CRUMBLES OR BREAKS WITH CONSIDERABLE FINGER PRESSURE		
STRONG	VIOLENT REACTION, WITH BUBBLES FORMING IMMEDIATELY	STRONG	WILL NOT CRUMBLE OR BREAK WITH FINGER PRESSURE		
	STRUCTURE		STRATIF	ICATION	
STRATIFIED	ALTERNATING LAYERS OF VARYING MATERIAL OR COLOR WITH LENSES AT LEAST 1/4" THICK	DESCRIPTION		THICKNESS	
LAMINATED	ALTERNATING LAYERS OF VARYING MATERIAL OR COLOR WITH PARTING LESS THAN 1/4" THICK	PARTING		1/16" - 1/4"	
FISSURED	BREAKS ALONG DEFINITE PLANES OF FRACTURE WITH LITTLE RESISTANCE TO FRACTURING	LENSE	1/4" - 4"		
SLICKENSIDED	FRACTURE PLANES APPEAR POLISHED OR GLOSSY, SOMETIMES STRIATED	LAYER	4" - 12"		
BLOCKY	COHESIVE SOIL THAT CAN BE BROKEN DOWN INTO SMALL ANGULAR LUMPS WHICH RESIST FURTHER BREAKDOWN	OCCASIONAL	ON	E OR LESS PER FOOT OF T	HICKNESS
LENSED	INCLUSION OF SMALL POCKETS OF DIFFERENT SOIL, SUCH AS SMALL LENSES OF SAND SCATTERED THROUGH A MASS OF CLAY	FREQUENT	MORE THAN ONE PER FOOT OF THICKNESS		
				_	

EXPLORATION LOG KEY - ROCK

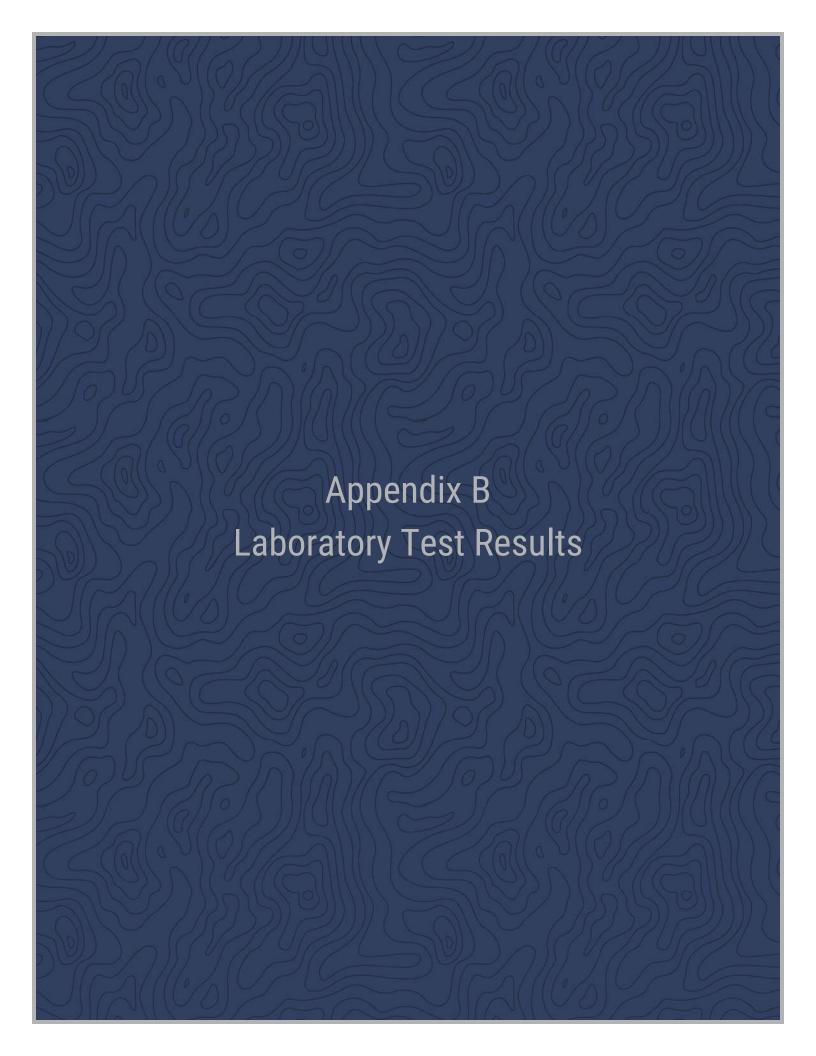
F	ROCK TYPE SYMBOLS	ROCK STRENGTH						
	BEDROCK	GE	RADE (DESCRIPTION)	FIELD IDENTIFICATION	APPROXIMATE UNCONFINED			
	BASALT	Gi	AADE (DESCRIT TION)	TILED IDENTIFICATION	COMPRESSIVE STRENGTH (PSI)			
	RHYOLITE	R0	EXTREMELY WEAK ROCK	CAN BE INDENTED BY THUMBNAIL	35 - 150			
	TUFF	R1	VERY WEAK ROCK	CAN BE PEELED BY POCKET KNIFE	150 - 725			
	LIMESTONE	R2	WEAK ROCK	CAN BE PEELED WITH DIFFICULTY BY POCKET KNIFE	725 - 3,500			
	SANDSTONE	R3	MEDIUM STRONG ROCK	CAN BE INDENTED 3/16" (5mm) WITH SHARP END OF PICK	3,500 - 7,000			
	SILTSTONE	R4	STRONG ROCK	REQUIRES ONE BLOW OF GEOLOGIST'S HAMMER TO FRACTURE	7,000 - 15,000			
	CLAYSTONE	R5	VERY STRONG ROCK	REQUIRES MANY BLOWS OF GEOLOGIST'S HAMMER TO FRACTURE	15,000 - 36,000			
	GRANITE	R6	EXTREMELY STRONG ROCK	CAN ONLY BE CHIPPED WITH BLOWS OF GEOLOGIST'S HAMMER	>36,000			

	ROCK QUALITY		ROUGHNESS OF DISCONTINUITY SURFACE
DESI	GNATION (RQD, %)	TERM	DESCRIPTION
0 - 25	VERY POOR	SLICKENSIDED	SURFACE HAS SMOOTH, GLASSY FINISH WITH VISUAL EVIDENCE OF STRIATIONS
25 - 50	POOR	SM00TH	SURFACE APPEARS SMOOTH AND FEELS SO TO THE TOUCH
50 - 75	FAIR	SLIGHTLY ROUGH	ASPERITIES ON THE DISCONTINUITY SURFACE ARE DISTINGUISHABLE AND CAN BE FELT
75 - 90	GOOD	ROUGH	SOME RIDGES AND SIDE-ANGLE STEPS ARE EVIDENT; ASPERITIES ARE CLEARLY VISABLE, SURFACE FEELS VERY ABRASIVE
90 - 100	EXCELLENT	VERY ROUGH	NEAR VERTICAL STEPS AND RIDGES OCCUR ON THE DISCONTINUITY SURFACE

DISCONTINUITY SPACING (FT)			ROCK WEATHERING AND ALTERATION							
EXTREMELY WIDE	>19.7		GRADE (TERM)	DESCRIPTION						
VERY WIDE	6.6 - 19.7	ı	FRESH	ROCK SHOWS NO DISCOLORATION, LOSS OF STRENGTH, OR OTHER EFFECTS OF WEATHERING						
WIDE	2.0 - 6.6	II	SLIGHTLY WEATHERED	ROCK IS SLIGHTLY DISCOLORED, BUT NOT NOTICEABLY LOWER IN STRENGTH THAN FRESH ROCK						
MODERATE	0.7 - 2.0	Ш	MODERATELY WEATHERED	ROCK IS DISCOLORED AND NOTICEABLY WEAKENED, BUT LESS THAN HALF IS DECOMPOSED; A MINIMUM 2" DIAMETER SAMPLE CANNOT BE BROKEN READILY BY HAND ACROSS THE ROCK FABRIC						
CLOSE	0.2 - 2.0	IV	HIGHLY WEATHERED	MORE THAN HALF THE ROCK IS DECOMPOSED; A MINIMUM 2" DIAMETER SAMPLE CAN BE BROKEN READILY BY HAND ACROSS THE ROCK FABRIC						
VERY CLOSE	0.07 -0.2	V	COMPLETELY WEATHERED	ROCK HAS BEEN ALMOST ENTIRELY DECOMPOSED TO SECONDARY MINERALS EVEN THOUGH THE ORIGINAL FABRIC MAY BE INTACT; MATERIAL CAN BE GRANULATED BY HAND						
EXTREMELY CLOSE	<0.07	VI	RESIDIIAI SOII	ROCK HAS BEEN ENTIRELY DECOMPOSED TO SECONDARY MINERALS AND ROCK FABRIC IS NOT APPARENT; MATERIAL CAN BE EASILY BROKEN BY HAND						

SOIL BORING NUMBER: B-1

PROJECT Evaporator Building DATE COMPLETED 12/23/2024 PROJECT NO. TF24239E **CLIENT** Amalgamated Sugar Company LOGGED BY C. Medina **LATITUDE / LONGITUDE** 42.53238, -114.43178 **BORING DIAMETER** 8 in **DEPTH TO GROUNDWATER (FEET)** N/A **EQUIPMENT** Diedrich D-120 Moisture Content (%) Passing No. 200 (%) Pocket Penetrometer (TSF) Recovery (in or %) Blow Counts/6" or %RQD Dry Density (pcf) Uncorrected N-Value Liquid Limit & Sample Type Elevation (ft) Depth (ft) Graphic Material Description Remarks 0 **Portland Cement Concrete** 5 in. slab, 8 in. base Fill (base) - Poorly Graded Gravel GPwith Silt (GP-GM), dark brown, GM moist, medium dense, subrounded to angular, fine to coarse-grained sand, fine to coarse-grained gravel Fill - Sandy Silt (ML), medium brown to dark brown, moist, very stiff, hand excavated to 2.5ft to fine-grained sand, with PCC material check for unmarked utilities ML -5 5 15 15" 1.0 21.10 58 20 Basalt and caliche cobbles from 6 to 7 feet BGS. Sandy Silt (ML), dark brown, moist, hard, fine-grained sand 15 8" 22 45 1.0 27.40 59 ML -10 10 -15" 22 47 1.0 Silty Sand (SM), orangish brown, 25 moist, dense, moderate cementation, fine-grained sand SM


SOIL BORING NUMBER: B-1

PROJECT Evaporator Building PROJECT NOTF24239E LOGGED BY _C. Medina					DATE COMPLETED 12/23/2024 CLIENT Amalgamated Sugar Company								
					LATITUDE / LONGITUDE 42.53238, -114.43178							l3178	
BORING DIAMETER 8 in						DEPTH	TO GR	OUND	WATI	ER (FE	ET) _	N/A	
EQUI	IPME	NT Diedrich D-120											
Elevation (ft)	Depth (ft)	Material Description	Graphic	Sample Type	Recovery (in or %)	Blow Counts/6" or %RQD	Uncorrected N-Value	Pocket Penetrometer (TSF)	Moisture Content (%)	Dry Density (pcf)	Passing No. 200 (%)	Liquid Limit &	Remarks
-15	15 -	Basalt, dark gray, r3: medium strong, close fracture spacing, highly vesicular, moderately weathered			100% 36"	RQD: 56							
-					100% 12"	RQD: 100				148.50			
-20	20 -				48% 20"	RQD: 0							
		Terminated at 20 feet BGS.			_				_		_		

SOIL BORING NUMBER: B-2

PROJECT Evaporator Building DATE COMPLETED 12/23/2024 PROJECT NO. TF24239E **CLIENT** Amalgamated Sugar Company LOGGED BY C. Medina **LATITUDE / LONGITUDE** 42.53238, -114.43169 **BORING DIAMETER** 8 in **DEPTH TO GROUNDWATER (FEET)** N/A **EQUIPMENT** Diedrich D-120 Moisture Content (%) Passing No. 200 (%) Pocket Penetrometer (TSF) Recovery (in or %) Blow Counts/6" or %RQD Dry Density (pcf) Uncorrected N-Value Liquid Limit & Sample Type Elevation (ft) Depth (ft) Graphic Material Description Remarks 0 **Portland Cement Concrete** 5 in. slab, 8 in. base Fill (base) - Poorly Graded Gravel GPwith Silt (GP-GM), gray, moist, dense, GM angular, fine to coarse-grained sand, fine to coarse-grained gravel Fill - Silty Sand (SM), brown, moist, loose, subangular, fine to coarse-grained sand, fine to coarse-grained hand excavated to 2.5ft to gravel, with basalt cobbles check for unmarked utilites SM 13" 3 0.5 16.90 40 Fill - Silty Gravel with Sand 5 -5 (GM), brown, moist, dense, fine-grained sand 22 rusted nail observed in 5.5-6ft GM 12" 36 75 10.60 15 sample Silty Sand (SM), orangish brown, moist, dense, with basalt fragments and cobbles SM -10 10 -Basalt, dark gray, highly to completely weathered, fractured 15" 38 66 Terminated on Basalt at 11.25 feet BGS.

Summary of Laboratory Test Results

Project: Evaporator Building Project Number: TF24239E
Client: Amalgamated Sugar Co. Date: 12/17/2024

Sample	Depth (Feet)	Lab Number	Soil Classification	Resistivity (Ohm-cm)	рН	Sulfates (ppm)	In Situ Moisture, %	Passing No. 200,%	Fines Class.
Source 24-STR-B-1	5.0-6.5	57995	Sandy Silt (ML)	-	-	(ppiii) -	21.2	58	ML
24-STR-B-1	7.5-9.0	57996	Sandy Silt (ML)	970	8.02	271	27.4	59	ML
24-STR-B-1	15.0-16.0	57997	(Basalt Rock)	-	-	-	-	-	-
24-STR-B-2	2.5-4.0	57998	Silty Sand (SM)	-	-	-	16.9	40	ML
24-STR-B-2	5.0-6.5	57999	Silty Sand with Gravel (SM)	-	-	-	10.6	15	ML

Reviewed By: Kick Wildomer

Keith Wildman

Laboratoy Services Coordinator

ASTM D7012 (Method C)

Client

Project

Report Date: 12/31/2024

Boise 8653 West Hackamore Drive

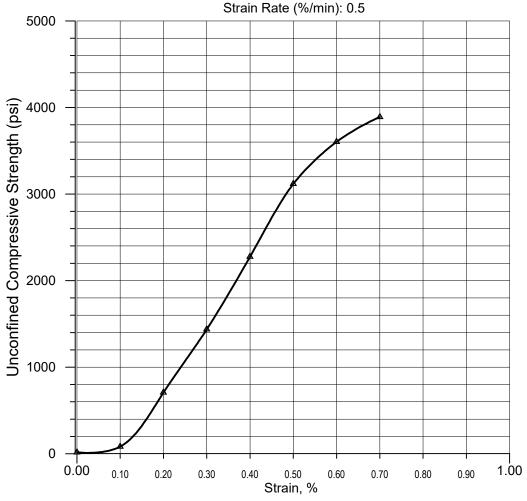
Boise, ID 83709 Phone: 208.376.8200 Amalgamated Sugar Company

TF24239E Evaporator Building 2320 Orchard Dr Twin Falls, ID 83301

SAMPLE INFORMATION

 SAMPLE No.:
 57997
 SAMPLE DATE:
 12/16/2024
 BORING No.:
 24-STR-B1

 SPECIMEN SIZE:
 Core
 TEST DATE:
 12/31/2024
 DEPTH (FT):
 15.0 - 16.0


SAMPLED BY: C. Medina SAMPLE CONDITION: Good

TESTED BY: J. Bingaman

APPARATUS: Tinius MOISTURE CONTENT: N/A UNIT WEIGHT: 148.5 pcf

SAMPLE PREP: Intact L/D RATIO: 1.77

METHOD: ASTM D2113 - Coring and Sample Rock Cores

Diameter (in): 2.4 Height (in): 4.25 Area (in²): 4.524 Unconfined Compressive Strength = 3890 psi (560 ksf) @ 0.7% Strain

Reviewed by Keith Wildman Laboratory Services Coordinator

ASTM D2435

Project

8653 W. Hackamore Dr

Boise, ID 83709 Phone: 208.376.8200

APPARATUS:

SAMPLE PREP:

Amalgamated Sugar Company TF24239E **Evaporator Building**

SAMPLE INFORMATION

SAMPLE No.: 57999 **SPECIMEN SIZE:** Shelby Tube

USCS CLASSIFICATION: Silty Sand with Gravel (SM)

Humboldt Load Frame Intact

TEST WATER: Tap **SAMPLE DATE: 12/13/2024 TEST DATE:**

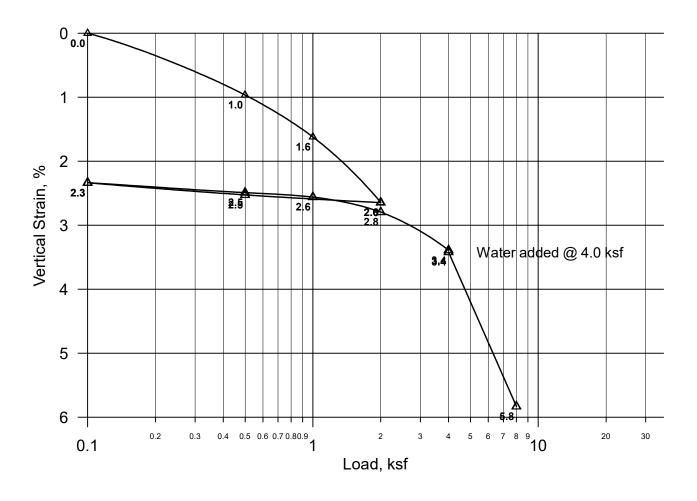
12/18/2024 C. Medina SAMPLED BY:

BORING No.: DEPTH (FT):

24-STR-B2 5.0-6.5

Report Date: 12/31/2024

SAMPLE CONDITION: Good


TESTED BY: V. Barinaga

INITIAL MOISTURE CONTENT: FINAL MOISTURE CONTENT:

10.6% 16.3%

DRY UNIT WEIGHT:

110.4 pcf

REMARKS: None

Reviewed by Keith Wildman Laboratory Services Coordinator